

High Resolution Satellite Imagery Applied to Oil and Gas Projects

Michael Barnes Cain & Barnes, LP

- History
- Science
- Image Resolution and Coverage
- From Raw to Useful Data
- General Applications in Oil and Gas
- Four Case Studies
- Conclusions

History

- 1859 First use of photograph from balloon
- 1903-1909 Pigeons and Aeroplane carry cameras
- WW1 and WW2 gave great technical advances
- U2 planes gather images during Cuba Crisis in 1962
- 1968 Apollo 8 maps potential landing sites on the Moon

History

- July 1972 NASA launched the first Earth Resources Technology Satellite (ERTS-1), aka Landsat
- 1985 Nimbus 7 Total
 Ozone Mapping
 Spectrometer (TOMS)
 discovers Ozone Hole
- 1986 Brazilian massive deforestation detected by Landsat
- 1991 Seven hundred
 Oilfield Fires in Kuwait
 from shuttle

Science

QuickBird Sensor Bands

Band 3 0.63-0.69 µm Band 2 0.52-0.60 μm Band 1 0.40-0.52 μm

Wave Lengths in Micrometers

Sensor Bands in RGB Slots

Band 3
Red

Band 2 Green Band 1
Blue

Merge Animation

Final Natural Color Composite

www.satimagingcorp.com

Copyright © DigitalGlobe - All rights reserved

Final Near Infrared (NIR) Composite

www.satimagingcorp.com

Copyright © DigitalGlobe - All rights reserved

Orthorectification is fundamental

- Image data is geometrically distorted
- Error sources: sensor construction, platform-induced, earth rotation, topography etc
- Image sensor is rarely in the nadir position
- Terrain displacement can be hundreds of meters
 - for example, if the satellite sensor acquires image data over an area with a kilometer of vertical relief with the sensor having an elevation angle of 60° (30° from Nadir) the image product will have nearly 600 meters of terrain displacement
- Additional terrain displacement result from errors in
 - setting the reference elevation, low elevation angles of images, imperfect terrain models, and variability of sensor azimuth and elevation angles

Unadjusted

Adjusted

Satellite Systems Overview

- Optical, 26 in orbit, 25 planned
- Radar, 3 in orbit, 9 planned
- Two major resolution groups
 - 18 high resolution (0.5 to 1.8 meters)
 - 44 mid resolution (2.0 to 36 meters)
- Swathe coverage varies
 - High resolution from 8 to 28 kilometers
 - Mid resolution from 70 to 185 kilometers
- Four privately funded systems in orbit (3 US and 1 Israeli)

High Resolution Satellites

Image Resolution

Image Resolution

Image Coverage

Perennial cloud cover ~ Bora-Bora

Area of Interest ~ Nigeria

National Coverage ~ Iraq

Oil and Gas Applications

- Pre and post 2D/ 3D seismic surveys
- Recovery of old well locations
- Corridor mapping
- Landcover and geologic classification
- Environmental Impact Studies and Monitoring
- Site selection, construction and monitoring
- Facilities mapping
- Base mapping for project GIS

Example: 3D seismic planning

Example: Well Locations

Reasons for Mislocation of Wells

- Accuracy and reliability of original measurement systems
- Miscalculations and poor QC
- Error in transformation of co-ordinate systems
- Transcription errors
- Data entered wrong
- Transposing legacy data to new technologies
- Inadequate documentation

Example: Transition Zone operations

SEG SPECIAL SESSION

Case Studies

- Extracted culture: Chad, USA, Nigeria
- Regional geologic classification: Yemen
- Change monitoring by time lapse: USA, China
- 3D digital elevation modeling: Tunisia

Extracted Culture Data from Orthorectified 0.8m IKONOS Image

www.satimagingcorp.com

Copyright © DigitalGlobe – All rights reserved

Extracted culture: Topography, Chad

Extracted culture: Tidal Wetlands, Nigeria

Regional Use of Imagery

Aster 15m Natural Color Composite

Aster 15m Geological Processing Composite

15m Geological Processing Final Classification

Landsat 30m mosaic with bathymetry

Time Lapse Use of Imagery

NAPP DOQQ ~17-Feb-1997 to IKONOS ~ 26-Jan-2003 Timeline Transition

SEG SPECIAL SESSION

Construction Progress QuickBird 0.6m Satellite Image ~ CSPC Petrochemicals – Huizhou, P.R. China

December 15, 2003

July 18, 2004

Construction Progress Animation (7 Months) QuickBird 0.6m Satellite Image ~ CSPC Petrochemicals – Huizhou, P.R. China

SEG SPECIAL SESSION

Three Dimensional Use of Imagery

IKONOS 0.8 m with stereo extracted 1 m contours ~ Tunisia

Copyright © Space Imaging – All rights reserved

6m Stereo Extracted Elevation Model ~ Tunisia

Copyright © Space Imaging – All rights reserved

Conclusions

- High resolution satellite imagery currently produces up to 0.8 meter of image resolution with promise of 0.25 meter resolution during this decade
- Accuracy is dependant on correct application of geodetic survey and mapping principles
- Imagery can support a broad range of applications for geoscience and engineering purposes
- Desktop use of imagery effectively saves time and money in planning, preparation and operations of field and office based projects

References

Websites:

- satimagingcorp.com
- digitalglobe.com
- spaceimaging.com
- terraserver.com
- keyhole.com
- rst.gsfc.nasa.gov (Remote Sensing Tutorial from EOS Goddard)

Google these:

- ASPRS Guide to Land Imaging Satellites
- Satellite imagery/ images/ imaging/ photos
- Google Earth

High Resolution Satellite Imagery Applied to Oil and Gas Projects

Michael Barnes Cain & Barnes, LP