
2007 ESRI Petroleum User's Group Workshop

Positioning Issues Related to Seismic Data

John Conner Chairman APSG 2007 President, EnSoCo Inc. jconner@ensoco.com February 28, 2007

EnSoCo, Inc. 2323 South Voss, Suite 490 Houston, Texas 77057 713-278-2326 sales@ensoco.com www.ensoco.com Applying the right tools and knowledge to complete a complex task with a predictable result!

Any position data loading is an exercise in this!

And remembering there is more than just X & Y*

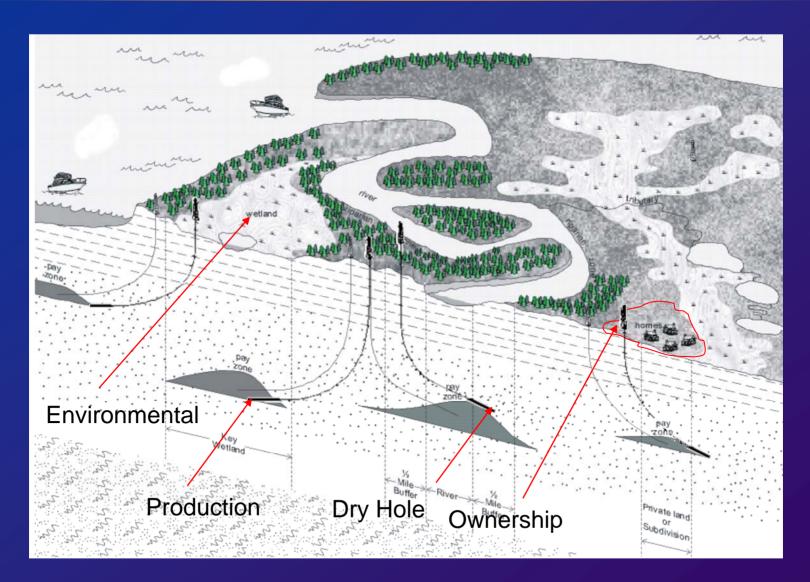
> Note: Geodetically this s/b Easting & Northing

What are the issues?

Positioning Issues:

- Geodetic and projection identity
- Project and point identity
- Media & formats of positioning data
- Precision and presentation

If the geodesy doesn't fit, you must a quit!


Latitude	Longitude	X	Y
29 25 00.00 N	89 56 30.00 W	2,443,081.1	275,426.9
29 25 00.79 N	89 56 30.25 W	3,723,882.6	336,132.4
29 25 00.65 N	89 56 30.80 W	214,552.1	3,257,770.7
29 24 59.77 N	89 56 29.99 W	744,653.0	83,943.2

- All these coordinates represent the exact same physical point on the Earth.
- They are all correct coordinates.
- Individually, they could also represent another point somewhere else on the Earth and still be correct.

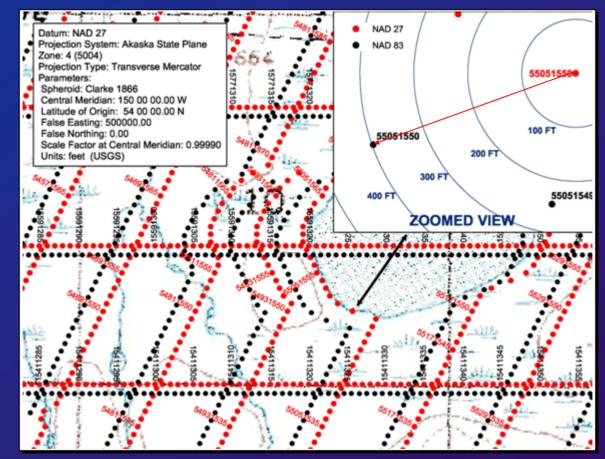
Intermixing misidentified coordinates can create positional errors ranging from a few feet or meters to miles or kilometers.

This is the number 1 reason for positioning differences!

If you don't know the geodetic and point identity only the coordinates, the impact can be quite serious.

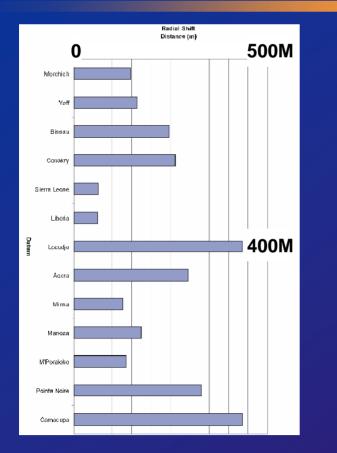
Early Retirement?

What you need to know about geodetic coordinates

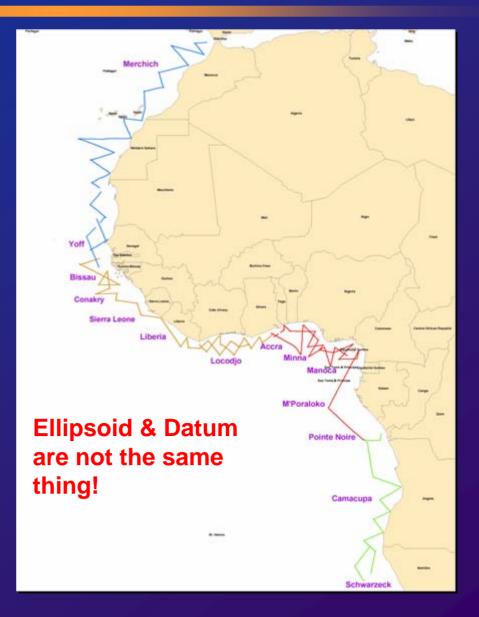

• Latitude, Longitudes must include:

- Ellipsoid and Datum information
 - They are not synonymous.
- Units (DMSH, DEC, DDM and variations).
- History of any transformations since acquired.
 - 1984 data was not acquired in WGS-84.
 - Libya embargo was in 1986 Know what was used then?

If the well data doesn't tie with the seismic, maybe some of the above was missing.


Misidentified datums is a common problem

Mismatched datums NAD-27 Vs. NAD-83 (400' misties for this area in Alaska). Mapped NAD-83 incorrectly as NAD-27.


You will NOT see a block shift in seismic data!

The Lat, Lons are Clarke 1880!

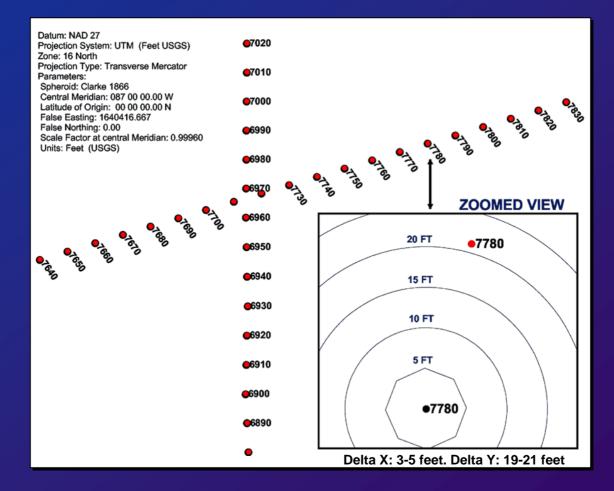
Variation in 13 local datums of over 400 meters. Most are referenced to Clarke 1880 IGN or RGS ellipsoid.

(Reference EPSG/OGP Database).

X, Y's without proper identity can also be a problem

Ç),,,,,,,,,,,,1,0,,,,		. 30
1		POWDER 1	RIVER BASIN, WYOMING SEGP1 FORMAT XY'S
2			*
з	182	101	578770.05347346.
4	182	109	578539.65347195.
5	182	117	578303.75347061.
6	182	125	578064.65346927.
7	182	133	577842.95346821.
8	182	141	577616.85346677.
9	182	149	577376.45346549.
10	182	157	577137.15346427.
11	182	165	576913.65346313.
12	182	173	576676.05346163.
13	182	181	576422.05346099.
14	182	189	576160.05345991.
15	182	197	575919.75345908.
16	182	205	575665.75345849.
17	182	213	575403.25345733.
18	182	221	575146.05345637.
19	182	229	574921.25345522.

- What do we really know about this information? \bullet
- I know the coordinates are not in Wyoming.
- The format is not SEG-P1. \bullet
- There is absolutely no identity telling you what the points are. And how much time would you spend figuring it out? \bullet
- \mathbf{O}
- Is this time well spent for a Geophysicist, Geologist or even a data \mathbf{O} loader?
- If it was UKOOA or SPS, you'd have a chance! \mathbf{O}


What you need to know about Grid identity.

- Grid coordinates must include:
 - Reference ellipsoid and preferably the datum
 - Projection type
 - Projection parameters
 - Projection units
 - Elevation and vertical datum information if land.

Errors approaching hundreds of meters due to miss-matched coordinates.

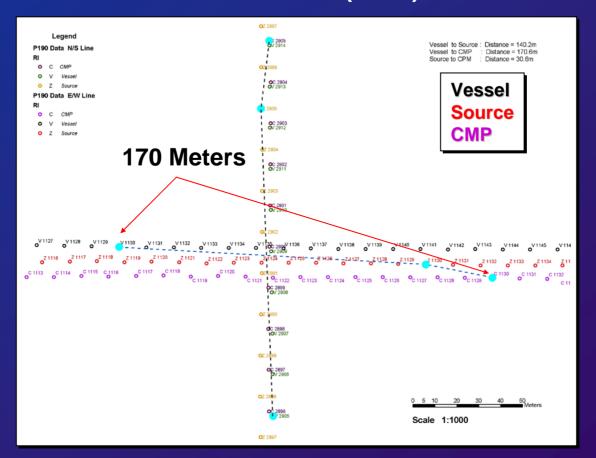
Open mouth insert U.S. Survey foot!

Mismatched units US Survey Ft. Vs. Intn'l Ft. (20' misties).
 3.280833333 (39.37/12), not 3.28 or 1/.3048 etc. It's a scaling error. This is GOM data UTM Zone 16.

Issues relating to identity.

Project and point Identification

Line and shot numbering


- Overlap / re-shoot schemes
- Position location
 - Vessel, common reference point, antenna
 - Source and receivers
 - Common Mid Point, common depth point
 - Echo sounder
 - Skids, relays, re-shoots, offset

Errors approaching hundreds of meters due to miss-matched position types.

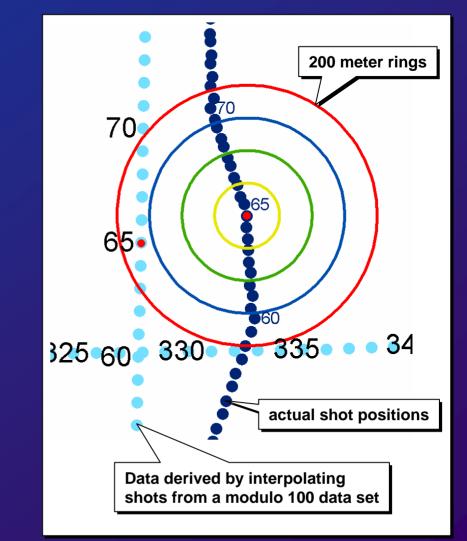
A mistie due to incorrect point identity.

Point identity

 What happens If your project is Source and you add some Common Mid Point (CMP) data?

Besides shot, what else do we need?

SL4006	101	637405.9	2346.7	232199900:00:01	4 Hrs. later
SL4006	102	637430.9	2346.8	232199900:00:11	
SL4006	103	637455.2	2347.1	232199900:00:21	
SL4006	104	637481.1	2346.8	232199900:00:31	
SL4006	103A	637455.4	2347.0	232199904:01:20	
SL4006	104A	637480.1	2346.4	232199904:01:30	
SL4006	105A	637505.3	2346.9	232199904:01:40	
SL4006	106A	637530.2	2346.6	232199904:01:50	
SL4006	519A	637930.4	2346.1	232199905:00:09	


 Line ID, Shot and X,Y may not be all that is required to do a merge with the seismic data.

You may need a Re-shoot code or date and time to actually match the positions with the seismic.

Other in-project issues.

In-project

- What are the coordinates?
 - Is the data a sub-set?
 - modulo
 - Has the data been changed?
 - Interpolated, transformed, scaled and rotated etc.
 - Migrated
 - How many duplicates?
 - Hundreds seem possible in your database?
 - Ever done an inventory?
 - What metadata does your project retain?

Not just the media but how its stored.

Media and Formats of positioning data

- Digital media and structures of positioning data
 - Many types of original media
 - ASCII vs. other encoding methods
 - Various forms of compression and archival
 - Proprietary and specialty vs. official "exchange" formats

The file is corrupt, ship me another.

	fast	
H0100 SURVEY AREA	1984 Survey	H0101 GENERAL SU
RVEY DETAILS 3D survey	H0102 VESSEL DETAILS H0103 SOURCE DETAILS H0200 DATE OF SURVEY H0201 DATE OF ISSUE OF T H0202 TAPE VERSION IDENTI	M/V Indi
an Seal 1	H0103 SOURCE DETAILS	AIR GUN A
RRAY 1 1	H0200 DATE OF SURVEY	Julian day
148 through 182, 1984	H0201 DATE OF ISSUE OF T	APE February 29
, 2005	H0202 TAPE VERSION IDENTI	FIER CLIENT001-12
lo	H0203 LINE PREFIX H0300 CLIENT	N/A
	HO300 CLIENT	CLIENT
	H0400 GECMAYSICAL CONTRACTOR	Geophysical Ser
vice Incorporated	H0500 POSITIONING CONTRACTOR	Unknown
	HOGOO NAV PROCESSING CONTRACTO	
HC	700 POSITIONING & ONBOARD SYS Syle	dis Primary - CMS
	300 COORDINATE LOCATION Cente	
H100	O CLOCK TIME GMT	
H1100	RECEIVER GROUPS PER SHOT 120	
H1400	SPHEROID USED FOR SURVEY NAD27	Clarke 1866 63
78206 400 294 97869881401 9	WRVEY SHIFT TO WGS-84 0.0	0.0 0.0
H1500 SF	HEROID FOR POST PLOT NAD27	Clarke 1866 6378
206,400 294,978698H1501 P09	TPLOT SHIFT TO WGS-84 0.0 0.	0 0.0
	EY SHIFT TO POST PLOT 0.0 0.0	
	CAL DATUM & ORIGIN Echo Sounder	
	006 Lambert Conform	al Conic
	ONE & HEMISPH California 5-API 040	
sample.p190 (29%)		

Could be record length, UNIX vs. DOS, or no CR/LF

"I need a UKOOA tape"

Formats and what they mean

- These are Seismic Standards
 - UKOOA Generally marine
 - SEG Generally land
 - SPS Generally land and TZ/OBC
- ASCII text formats (100's)
- Workstation exchange formats. (Many)
- E-mail me a list.
- Soon to be XML, GML etc.

A typical workstation format.

Filename=TOSMAIN_MG_SMT_UTM15NAD27FEET.txt

2001989.1656559884263.61115113151.77832002112.1961049884263.61114013129.56642002235.2265539884263.61113013100.00592002358.2570029884263.61111913058.11042002481.2874519884263.61110813029.20612002604.3179009884263.61109812959.29202002727.3483489884263.61108712921.00492002850.3787979884263.61107712882.75002002973.4092469884263.61106612844.46292003096.4396959884263.61105512806.1758

A 1,000,000th of a foot precision?

Without the file name what do we know about this data? What about in 5 years when the project is revisited? How would you label the map?

What is UKOOA?

UKOOA: United Kingdom Offshore Operator's Association

De-facto standard for many positioning formats

These relate to seismic

- UKOOA P1 is for the exchange of positioning data
 - P1/78 (many), P1/84, P1/90 (current)
 - May have many position types
- UKOOA P2 is used to record raw data during acquisition.
 - P2/86, P2/91(current), P2/94 (current)
 - Must be processed to obtain positions!!
- http://www.oilandgas.org.uk/ukooa/newpublications/srchResults.cfm

What's a Bursa-Wolf ? Are they endangered ?

UKOOA P1/90 – Header records.

- There is an extensive and structured set of "H"eader records. Most importantly they define the geodesy of the coordinates.
- Postplot is what the coordinates are in.

H1400 GEODETIC DATUM (SURVEY)..: Congo C60 Clarke 1880 6378249.200 293.4660213 H1401 TRANSFORMATION TO WGS84..: -178.3-316.7-131.5 5.278 6.07710.97919.1660000 H1500 GEODETIC DATUM (POSTPLOT): Congo C60 Clarke 1880 6378249.200 293.4660213 H1501 TRANSFORMATION TO WGS84..: -178.3-316.7-131.5 5.278 6.07710.97919.1660000

H1600DATUM TRANSFORMATIONS 0.0 0.0 0.0 0.000 0.000 0.000 0.000000 H2000GRID UNIT 1METRES 01.000000000000 H2001HEIGHT UNIT 1METRES 01.000000000000 H2002ANGULAR UNIT: 1DEGREES H2200LONG. OF CENTR. MERID. ..: 9 0 0.000E H2301GRID ORIGIN 0 0 0.000N 9 0 0.000E H2302GRID COORD. AT ORIGIN ...: 500000.00E10000000.00N H2402LAT/LON WHERE SCALE DEF..: 0 0 0.000N 9 0 0.000E

 The 7-parameter Datum shift model for P1/90 is by definition Bursa-Wolfe (signed for counter-clockwise rotation) so, what does your workstation or application use?

Where's the source!

UKOOA P1/90 – data records

 Positions are identified by a prefix ("A"ntenna, "V"essel, "S"ource, "T"ail buoy etc.) They will be in latitude, longitude and in X,Y.

S1511BS02A004115554254220.87S0433253.13W6047923.47114269.02001.8214152621V1511BS02A00415554254216.57S0433254.67W6047891.17114406.12001.8214152621T1511BS02A00415554254638.16S0433104.73W6050301.97106029.22001.8214152621

- "R"eceiver or trace number and positions will be in X,Y only.

R	15997781.57118273.3	.0	2 5997787.97118248.8	. 0	35997794.47118224.3	.01
R	45997800.77118199.9	.0	55997807.27118175.4	. 0	65997813.57118150.9	.01
R	75997819.97118126.5	.0	85997826.37118102.1	.0	95997832.77118077.6	.01

SEG P1 – The format that wouldn't die!

- SEG - Society of Exploration Geophysicists

- SEG "P1" Position exchange format.
 - Considered by our "industry" as the standard for exchange of "Final" land positions.
 - Used for almost anything else as well.
- Last updated by SEG in 1983.
- Supported by most if not all workstations.
- 80 character "card image" records, blocked 20 is the standard. Rarely blocked, Rarely 80 characters.
- Often encoded as EBCDIC rather than ASCII.
- Many non-standard versions.
- http://seg.org/publications/tech-stand/

SEG P1 – Pretty normal – incorrect headers

Ç),,,,,,,,,,,10,,,,,,,,,,	2,0,	0, , , , , , , , 5,0, , , , , , , , 6,0, , , , , , , 7,0, , , , , , 8,0, , , , , ,
1		POWDER RIVER BASIN,	WYOMING SEGP1 FORMAT XY'S
2			
3	182	101	578770.05347346.
4	182	109	578539.65347195.
5	182	117	578303.75347061.
6	182	125	578064.65346927.
7	182	133	577842.95346821.
8	182	141	577616.85346677.
9	182	149	577376.45346549.
10	182	157	577137.15346427.
11	182	165	576913.65346313.
12	182	173	576676.05346163.
13	182	181	576422.05346099.
14	182	189	576160.05345991.
15	182	197	575919.75345908.
16	182 2	205	575665.75345849.
17	182 2	213	575403.25345733.
18	182 2	221	575146.05345637.
19	182 2	229	574921.25345522.
20	182 2	237	574684.85345413.
21	182 2	245	574475.55345275.
22	182 2	253	574235.35345172.
23	182 2	261	573981.65345035.
24		269	573763.75344896.
25	182 2	277	573516.05344757.
32.62	182 2	285	573293.45344613.
27	182 2	293	573079.05344496.
28		301	572840.55344343.
29		309	572600.05344210.
30		317	572358.15344090.
31		325	572138.05343941.
32		333	571901.15343807.
33		341	571695.55343661.
34		349	571457.75343548.
35		357	571229.15343437.
36		365	571002.85343282.
37	182 :	373	570780.65343147.

SEG P1 – Headers – Compliant

- H SEG-P1 Header
 - SEG-P1 Header

*

*

*

These were the actual headers in every file provided for a major mapping project!

 Headers are often stripped or made compliant to get past the requirement for headers.

SEG P1 – Unusual – very good headers

Ç),,,,,,,,,,,,10,,		
1		SEISMIC SURVEY	
2			
3	PROSPECT	:Wyoming	
4	LINE	:182	
5		:Line182.SEG	
6	LINE ID		
~	LINE LENGTH		 All these headers are freeform.
8	LENGTH UOM	:MI	
1.1.1.1	RESHOOT COD	73.	
10 11		DATUM:NAD27, USGS FEET, Degree	
12		:NAD27, Wyoming SPCS, Zone: B :There are instances where it	Oil companies often
13	_1 2	:some SP's were assigned the	 Oil companies often
14		errors with one only solutio	
15	-4	are needed to determine the	create their own standard.
16		:Questionable SP's and correct	
17	_3 _4 _5 _6	:QC spreadsheet.	
18	<u>-</u>		
19			What how one when they
20	<line< th=""><th>><point>R< LAT >< LONG</point></th><th> What happens when they </th></line<>	> <point>R< LAT >< LONG</point>	 What happens when they
21	182	101 04493500N1085902	
22	182	109 04493451N1085903	exchange data or merge?
23	182	117 04493407N1085904	
24	182	125 04493363N1085904	
25	182	133 04493328N108590559	W 189581 1754203 O
26	182	141 04493281N108590633	W 189506 1754156 O
27	182	149 04493239N108590710	
28	182	157 04493199N108590788	
29	182	165 04493161N108590859	
30	182	173 04493112N108590936	
31	182	181 04493090N108591018	
32	182	189 04493055N108591103	
33	182	197 04493027N108591181	
34	182	205 04493008N108591263	
35 36	182	213 04492970N108591348	
36	182 182	221 04492937N108591431 229 04492900N108591504	
38	182	229 04492900N108591504 237 04492864N108591579	
39	182	237 04492804N108391379 245 04492819N108591647	
	102	213 01192019W100391047	· 100110 1100070 0

The marriage of positioning and seismic - SPS

• SPS - The Shell Processing Support Format for land 3D data.

- Principal format for TZ/OBC.
- Endorsed by both SEG & UKOOA.
- Built in to many newer acquisition systems.
- Has extensive header structure.
- X,Y coordinates only.
- Principal sub files are the "S", "R" and "X".
- The "X" file requires seismic information to construct channel mapping.
- http://seg.org/publications/tech-stand/

SPS has some commonality with UKOOA

SPS – Header records – Similar to UKOOA format.

H12 Geodetic datum,-spheroid	WGS-84 WGS-84 6378137.000 298.2572236
H14 Geodetic datum parameters	0.000 0.000 0.000 0.000 0.000 0.000 0.000
H17 Vertical datum description	MSL, EQUIPOTENTIAL, 59 34N 01 32E, 47.0m;
H18 Projection type	U.T.M. NORTHERN HEMISPHERE;
H19 Projection zone	31,N;
H20 Description of grid units	METRES ;
H201Factor to metre	00001.0000000
H220Long. of central meridian	3 0 0.000E
H231 <mark>Grid Origin</mark>	0 0 0.000N 3 0 0.000E
H232Grid coord. at origin	50000.00E 0.00N
H241Scale factor	0.9996000000
H242Lat., long. scale factor	0 0 0.000N 3 0 0.000E

7-parameter shifts are again counter-clockwise
 Europeans win again!

Channel, ground station, receiver and trace?

• SPS – Data records.

- "S", "R" and "X".

X,Y coordinates only.

S 11S08	94A289	16771A1	8.0	0	121	422977.2	6609404.2	0.0258	065313
S 11S08	94A289	16752A2	8.0	0	122	422946.1	6609355.5	0.0258	065323
<mark>S11S08</mark>	94A289	16731A1	8.0	0	122	422927.1	6609405.9	0.0258	065332
R11R08	92A001	11561H1	120	0	120	416463.4	6609561.6	0.0257	035051
R11R08	92A001	11561G1	120	0	120	416463.4	6609561.6	0.0257	035051
R11R08	92A001	11561G2	120	0	120	416463.4	6609561.6	0.0257	035051
R11R08	92A001	11561G3	120	0	120	416463.4	6609561.6	0.0257	035051
X1	1677111150894	A289	16771	5	204	111R0910A	001	1554	11561
X1	1677121150894	A289	16771	209	408	111R0910A	001	1554	11561
X1	1677131150894	A289	16771	413	612	111R0910A	001	1554	11561
X1	1677141150894	A289	16771	617	816	111R0910A	001	1554	11561
X1	1677111150894	A289	16771	8213	1020	111R0892A	001	1554	11561
<mark>X</mark> 1	1677121150894	A289	167711	10251	1224	111R0892A	001	1554	11561
<mark>X</mark> 1	1677131150894	A289	167711	12293	1428	111R0892A	001	1554	11561
X 1	16771411S0894	A289	167711	14331	1632	111R0892A	001	1554	11561

How come the coordinates changed?

Precision of coordinates for seismic.

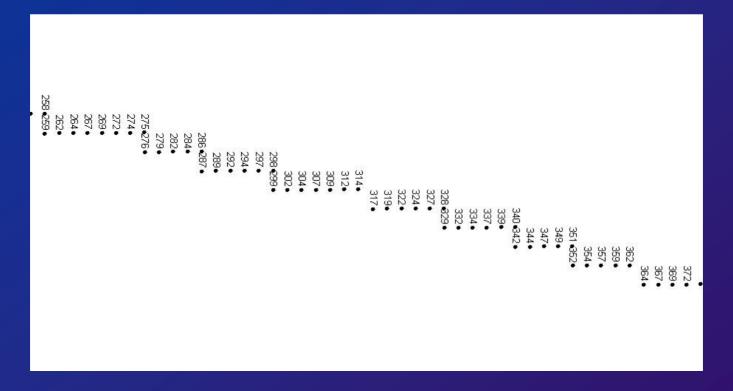
- "Generally"
 - Latitude, longitude to 6 decimal places if decimal degrees
 - Latitude, longitude & seconds to 2 decimal places if degrees minutes and seconds
 - X,Y coordinates to 1 or 2 decimal places
- Most expect meters or feet.
- The recorded resolution between X,Y and latitude, longitude are not generally equivalent.
 - What came first the Lat,Lon or the X,Y?

How come only the Y coordinates changed!

- Precision of coordinates for seismic (Cont.).
 - Some formats were not specified to allow for full precision of all projections and units.
 - You should know about "implied decimals".
 - The standard format specifications are defined in FORTRAN nomenclature (FW.D or IW).
 - I8, I10, F8.0, F8.1, F10.2 etc.
 - 12345678 = I8
 - 1234567. = F8.0
 - 12345678 = 1234567.8 if F8.1

DMSH,DMSSS,IMPLIED,SIGNED, UNSIGNED!

G965	1435 <mark>30</mark>	2716.67N	88 1 4.46W	1319785.111054512.	11.5190 40318
S1157	1336 <mark>30</mark> 2	2341.76N	8758 2 . 26W	407074.23362764.0	3.9 221 4 5502
R1349	1016 3	0120536N	87545847W	1351066210962203	54194103170817
R3 D	8371518 <mark>30</mark> .	3017010N	880305980W	1309321 11072824	0152
S1029	1278 3	0.359719	-88.000678	1324907.211019956.	13.10200 01250


- All of these records come from the same project.

- There are 4 different formats for Latitude & Longitude.
- There are 5 different formats for X,Y + 1 change of units.
- There are 4 different formats for depth / elevation.
- Two of the records are UKOOA P1/84.
- Two of the records are UKOOA P1/90.
- One was made up in the field.
- Some of them were in the same files.

How good are you with a text editor?

If not, what do your DBF and SHP files look like?

Wonder why they shot it like that, looks like stairs!

 If you misidentify or do not understand the precision of coordinates

Understand Precision and Presentation

Be sure and visit the APSG website and download

Guidance Note for Geodetic and Cartographic Applications (Precision and Presentation)

http://apsg.home.texas.net/

How to solve / understand the issues

- Learn basic Geodesy.
- Realize that Metadata must be retained along with coordinates.
- Exchange data according to accepted standards.
- Understand precision and presentation of coordinates.
- Join or support the APSG and get involved in change.
- Support the EPSG/OGP geodetic database (www.epsg.org).

Remember everything is about good positioning!

And applying the right tools & knowledge!

2007 ESRI Petroleum User's Group Workshop

Positioning Issues Related to Seismic Data

John Conner Chairman APSG 2007 President, EnSoCo Inc. jconner@ensoco.com February 28, 2007

EnSoCo, Inc. 2323 South Voss, Suite 490 Houston, Texas 77057 713-278-2326 sales@ensoco.com www.ensoco.com

THANK YOU!